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System of interest

● Air-water multifluid flow
● Viscous effects neglected
● Surface tension neglected

● Transport equation to track the mass gas 
fraction transport cg 

● « Three-equation » volume averaged model 
(one velocity) with pressure equilibrium closure



  

Scope, applications, project

● Wave breaking/wave impact analysis
● Pressure impact under sloshing conditions
● Pipe flows

● … a milestone before including more Physics 
(viscosity, surface tension, …)

● … prototype multiphase code solver suitable for 
GPU parallel computing.



  

System of equations

● Isentropic Euler system for gas
● Isentropic Euler system for (compressible) 

liquid
● + interface (kinematic/dynamic) conditions

● Trick : make use of a colored fluid function

● Numerical approach: consider



  

● Use the mass gas fraction for example as color 
function:

● We get mass conservation per phase :

● + momentum equation

● + closure : pressure equilibrium closure:



Choice of the EOS for each fluid 
● For the gas phase, we use a perfect gas law :

● For the water : we use a modified Tait equation 
for the liquid

with for instance: 0 13.5,  1000,  c 350 m.s , ( 350)l l s Kγ ρ −= = = =

NB: weakly compressible: if               



Pressure equilibrium equation

● From the knowledge of the conservative variables 
               and                              , we have to solve :

i.e.

● NB : very stiff function, the choice of the iterative solver 
requires attention (initial guess, surrogates, Newton, etc.) 

● In fact, there is a trick … : 



Trick for initial guess :

● The liquid mass conservation equation can be written in 
the form :

● Under the weak compressibility assumption or the liquid 
phase, we get

● A numerical scheme is applied to this additional ``guess 
equation'' to compute initial guesses of the iterative solver

→ Newton algorithm converges in 2 iterates with 
acceptable accuracy (strong improvement in CPU time).



Numerical scheme



Lagrange-remap strategy

● First write the equations in Lagrangian form  

(Lagrange integral form here) 

● Integrate them in time over a time step

● Project the quantities on the fixed Eulerian grid (remap)



Conservative form

● Lagrange-remap schemes  can be rewritten actually in 
conservative form [De Vuyst et al, CRAS Mécanique 2012].

● 1D case : 



Antidiffusive strategy

Void fraction at interface :
how to compute it ?

● Strategy : « be as sharpest as possible for 
step-shaped color functions while staying stable (just at the limit) »

● Idea : design a combination of upwinding scheme 
and downwind scheme [Lagoutière Després 2002, Kokh-Lagoutière 2010]

● The advection process can be seen as a over-compressive
« limiting » procedure (superbee-like, hyperbee, ...)



Test cases 

and numerical experiments

(+ comparison to physical experiments
for some of them)



1. Collapse of a liquid column with an obstacle

O. Ubbink Numerical prediction of two-fluid systems 
with sharp interfaces, PhD thesis (1997)

150Nx Ny= =
1.4,  7g lγ γ= =
3 3

0 01.28 kg.m ,  1000 kg.mg lρ ρ− −= =
5 1

0 sound10 ,  350 m.sP c −= =

0.146 m,  0.024 ma d= =



Collapse with an obstacle – comparison with 
incompressible fluid model

Num. Result. 
Ubbink

Num. Result. 
Ubbink

Num. Result. with 
Odyssey

Num. Result. with 
Odyssey



Benefits of the antidiffusive approach

t=0.2s

t=0.4s

t=0.6s

Evolution of for 
different remapping

algorithms  

A B C

Case A: 1st order with 
upwind
Case B: 2nd order with 
upwind
Case C: 1st order with 
Low-Diff. 



● Another case of collapse of a liquid column with 
an obstacle

D. M. Greeves Simulation of viscous water column 
collapse using adapting hierarchical grids J. Num. 
Meth. Fluids 2006

300Nx Ny= =
1.4,  7g lγ γ= =

3 3
0 01. kg.m ,  1000 kg.mg lρ ρ− −= =

5 1
0 sound10 ,  350 m.sP c −= =

Exp: from 
Koshizuka et al A particle method.. Comp. Fluid Mech. 1995

0.25,  0.04a d= =
End of the 

experimental 
open tank 1 mLx Ly= =

0.6 m



Simulations of a dam break

Sim. Greeves Exp. Koshizuka Sim. Odyssey



Simulations of a dam break

Sim. Greeves Exp. Koshizuka Sim. Odyssey



Sloshing test cases – pitch motion

● Sloshing due to the pitch motion of a 
rectangular tank:

J.R. Shao et al . An improved SPH method for modeling 
liquid sloshing dynamics.  Comp. Fluids 2012

The tank is oscillating as a 
pendulum according to:

( )0( ) sin rt tθ θ ω=

0.64 ,  0.14 ,  0.03

300,  67
wL m H m h m

Nx Ny

= = =
= =

( )0 6 ,  4.34 rad/s 1.45 sr Tθ ω= = =°with

Simulation are performed in the frame 
of reference of the tank.



Comparison SPH – present method
J.R. Shao et al . An improved SPH method for modeling 
liquid sloshing dynamics.  Comp. Fluids 2012

We superimpose the profile of the article:



Sloshing test cases – surge motion

● Sloshing due to the surge motion of a rectangular tank:

The tank is moving horizontally according to:

1.73 ,  1.15 ,  0.6

0.05 m

173,  115

wL m H m h m

d

Nx Ny

= = =
=

= =

0.032 m,  1.3 s  ( =4.83 rad/s).forcedA T ω= =with

J.R. Shao et al . An improved SPH method for modeling 
liquid sloshing dynamics.  Comp. Fluids 2012

First natural frequency of the fluid 
in the box

Two frequencies are acting          and                  forcedωfluidω

O.M. Faltinsen et al . Multidimensional modal 
analysis...  J. Fluid. Mechanics 2000

Experimentals results are available:



Sloshing test cases – surge motion

Free surface elevation of water at the probe

with our code

Scanned 
experimental results 

of 

O.M. Faltinsen et al . 
Multidimensional modal 

analysis...  J. Fluid. Mechanics 
2000



We search to find a fit of our curve with a function as a superposition of two signals
                                                                    
                                                                       ,       we get: 

Sloshing test cases – surge motion

1 1 1 2 2 2( ) sin( ) sin( )f t A f t A f tϕ ϕ= + + + 1 23.74 0.01 rad/s,  4.83 0.01 rad/s f f= ± = ±

very close to                                   and =4.83 rad/sforcedωfluid 3.77 rad/sω ≈



LT air-water Rayleigh-Taylor instability
water

air

Initial : g

Grid 400x400, about 1.5 day of computation (sequential)

About 0.5 sec of physical 
time



Concluding remarks

● Innovative numerical Eulerian method involving :

– a Lagrange-Remap finite volume method

– an anti-diffusive approach and the void fraction to keep a thin 

interface between the two fluids

● The test cases show a good agreement between XP and other codes 

(dam break, sloshing events)

● Ongoing works : XP + num of water wave wall impact (Luc Lenain, Ken 

Melville, U. Delaware San Diego, Frédéric Dias, U. College Dublin).

● Need to add : physical viscosity, surface tension for further investigation and 

validation

● GPU parallel computation



Some videos ...



Papers & videos

● A. Bernard-Champmartin, F. De Vuyst, « A low diffusive 
Lagrange-Remap scheme for the simulation of violent air-water 
free-surface flows », under progress, to submit to J. Comput. 
Phys. (2012)

● A. Bernard-Champmartin, F. De Vuyst, A low diffusive 
Lagrange-remap scheme for the simulation of violent air-water 
free-surface flows. Applications to dam-break and sloshing 
events, in preparation.

● Videos :

http://www.youtube.com/user/floriandevuyst/videos 

http://www.youtube.com/user/floriandevuyst/videos


Thank you for your attention
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