### Séminaire LMT – 21 février 2013

## Lagrange-remap solver and low-diffusive interface capturing for air-water flows

Aude Bernard-Champmartin, Florian De Vuyst

Centre de Mathématiques et de leurs Applications CMLA UMR 8536 – ENS CACHAN





### Outline

- 1. Context, applications
- 2. System derivation
- 3. Numerical method
- 4. Antidiffusive procedure for the gas-liquid interface
- 5. Numerical experiments & validation
- 6. Concluding remarks

## Context, applications

- Air-water flows, violent flow conditions
- Fast dynamics, transient regime

 Applications: Liquified Natural Gas LNG carriers, hydrodynamics, coastal engineering, wave impact, ...

Wave impact pressure peak analysis

## Objectives

- Design numerical methods subject to some requirements :
  - Robustness
  - Accuracy
  - Conservation
  - Fluid treated as compressible
  - Natural parallel extension / implementation
- Accelerate computations to 2 or 3 orders of magnitude, allowing for statistics (as for experimental setups, hexapods)

### Sources of stiffness

- Gas/liquid mass density ratio of order 1000
- Stiffness due to weak compressibility of liquid → low Mach number flows
- Gas-liquid free boundaries

## Assumptions here

- Viscous effects omitted
- Surface tension omitted

## Derivation of the system (inviscid)



$$\partial_t \rho_k + \nabla \cdot (\rho_k \boldsymbol{u}) = 0$$
  
$$\partial_t (\rho_k \boldsymbol{u}) + \nabla \cdot (\rho_k \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p = \rho_k \boldsymbol{g}, \quad k = g, \ell$$

Indicator function :  $z=z(\boldsymbol{x},t)\in\{0,1\}$   $\rho=z\rho_g+(1-z)\rho_\ell$ 

$$\partial_{t}\rho + \nabla \cdot (\rho \boldsymbol{u}) = 0,$$

$$\partial_{t}(\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p = \rho \boldsymbol{g},$$

$$D_{t}z = \partial_{t}z + \boldsymbol{u} \cdot \nabla z = 0,$$

$$p = z p_{\ell}(\rho_{\ell}) + (1 - z) p_{g}(\rho_{g}) \qquad \frac{\partial p_{k}}{\partial \rho_{k}} = c_{k}^{2} > 0$$

## Involving gas mass fraction

$$c_q \in \{0, 1\}$$

$$\partial_t (c_q \rho) + \nabla \cdot (c_q \rho \boldsymbol{u}) = 0$$

From

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = 0,$$

we also get

$$D_t c_g = \partial_t c_g + \boldsymbol{u} \cdot \nabla c_g = 0.$$

## Dealing with numerical z in [0,1]

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = 0,$$

Total mass conservation

$$\partial_t(\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p = \rho \boldsymbol{g},$$

Momentum balance

$$\partial_t (c_g \rho) + \nabla \cdot (c_g \rho \boldsymbol{u}) = 0,$$

Gas mass conservation

$$D_t z = \partial_t z + \boldsymbol{u} \cdot \nabla z = 0,$$

$$p = z p_{\ell}(\rho_{\ell}) + (1 - z) p_g(\rho_g)$$

Pressure closure

In the spirit of [Kokh-Lagoutière 2010]

Introducing the volume fraction:

$$z\rho_g = c_g \rho, \quad z\rho_g + (1-z)\rho_\ell = \rho.$$

Shorcoming: 
$$\rho_g = \frac{c_g \rho}{z}$$
 may be undetermined numerically.

## Use of a (simplified) volume-averaged system and pressure equilibrium closure

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = 0,$$
  

$$\partial_t (\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p = \rho \boldsymbol{g},$$
  

$$\partial_t (c_g \rho) + \nabla \cdot (c_g \rho \boldsymbol{u}) = 0,$$

$$p = p_g(\rho_g) = p_\ell(\rho_\ell)$$

Pressure equilibrium into an elementery volume

#### can be rewritten as

$$\partial_t (\alpha \rho_g) + \nabla \cdot (\alpha \rho_g \boldsymbol{u}) = 0,$$

$$\partial_t ((1 - \alpha)\rho_\ell) + \nabla \cdot ((1 - \alpha)\rho_\ell \boldsymbol{u}) = 0,$$

$$\partial_t (\rho \boldsymbol{u}) + \nabla \cdot (\rho \boldsymbol{u} \otimes \boldsymbol{u}) + \nabla p = \rho \boldsymbol{g},$$

$$p = p_g(\rho_g) = p_\ell(\rho_\ell)$$

## Typical equations of state (EOS) in use

$$p_g(\rho_g) = p_0 \left(\frac{\rho_g}{\rho_g^0}\right)^{\gamma_g}, \ \gamma_g = 1.4,$$

$$p_{\ell}(\rho_{\ell}) = p_0 + \frac{\rho_{\ell}^0 c_s^2}{\gamma_{\ell}} \left( \left( \frac{\rho_{\ell}}{\rho_{\ell}^0} \right)^{\gamma_{\ell}} - 1 \right), \ \gamma_{\ell} = 7.$$

#### Near atmospheric conditions:

$$p_0 = 10^5 \ Pa, \ \rho_g^0 = 1.2 \ kg.m^{-3}, \ \rho_l^0 = 1000 \ kg.m^{-3}.$$
  
 $c_s = 1500 \ m.s^{-1}.$  Artificial:  $c_s = 350 \ m.s^{-1}.$ 

## Pressure equilibrium equation

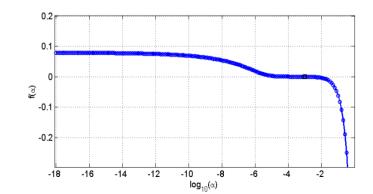
• From the knowledge of the conservative variables  $W_g=\alpha\rho_g$  and  $W_g=(1-\alpha)\rho_g$  , we have to solve :

$$p_g(\rho_g) = p_\ell(\rho_\ell)$$

i.e.

$$\varphi(\alpha) = \left(\frac{W_g}{\alpha \rho_g^0}\right)^{\gamma_g} - 1 - K\left[\left(\frac{W_\ell}{(1-\alpha)\rho_\ell^0}\right)^{\gamma_\ell} - 1\right] = 0, \quad \alpha \in ]0,1[.$$

 NB: very stiff function, the choice of the iterative solver requires attention (initial guess, surrogates, Newton, etc.)



In fact, there is a trick ...:

## Trick for initial guess:

 The liquid mass conservation equation can be written in conservative form as:

$$\partial_t (1 - \alpha) + \nabla \cdot [(1 - \alpha) \boldsymbol{u}] = -\frac{D_t \rho_\ell}{\rho_\ell}.$$

 Under the weak compressibility assumption or the liquid phase, we get

$$\partial_t \alpha + \nabla \cdot (\alpha \boldsymbol{u}) = 0.$$

- A numerical scheme is applied to this additional ``guess equation" to compute initial guesses of the iterative solver
  - → Newton algorithm converges in 2 iterates with acceptable accuracy (strong improvement in CPU time).

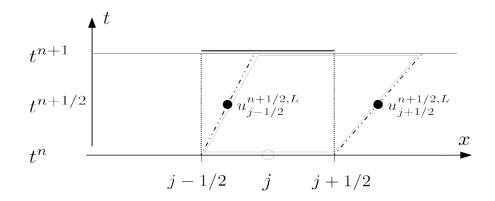
## Numerical scheme

### Remapped Lagrange Eulerian solver

First write the equations in Lagrange form

$$\rho D_{t}(\frac{1}{\rho}) - \nabla \cdot \boldsymbol{u} = 0, \qquad \frac{d}{dt} \int_{\Omega_{t}} \alpha \rho_{g} dx = 0, 
\rho D_{t} \boldsymbol{u} + \nabla p = \boldsymbol{g}, \qquad \frac{d}{dt} \int_{\Omega_{t}} (1 - \alpha) \rho_{\ell} dx = 0, 
D_{t} c_{g} = 0, \qquad \frac{d}{dt} \int_{\Omega_{t}} \rho \boldsymbol{u} dx + \int_{\Omega_{t}} \nabla p dx = \int_{\Omega_{t}} \rho \boldsymbol{g}.$$

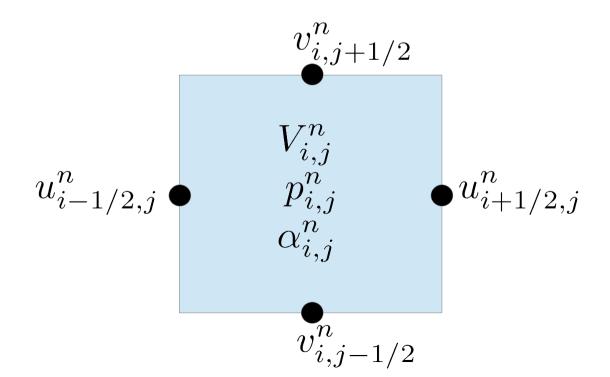
- Advance in time
- Project the quantities on the fixed Eulerian grid (remap)



### Typical Lagrange scheme (spatial staggered grid)

$$\begin{split} u_{i+1/2,j}^{n+1/2,L} &= u_{i+1/2,j}^n - \frac{\Delta t}{2} \frac{\Delta y}{m_{i+1/2,j}^n} \Big[ (p+q)_{i+1,j}^{n+1/2,L} - (p+q)_{i,j}^{n+1/2,L} \Big], \\ v_{i,j+1/2}^{n+1/2,L} &= v_{i,j+1/2}^n - \frac{\Delta t}{2} \frac{\Delta x}{m_{i,j+1/2}^n} \Big[ (p+q)_{i,j+1}^{n+1/2,L} - (p+q)_{i,j}^{n+1/2,L} \Big] + \frac{\Delta t}{2} g. \end{split}$$

$$V_{i,j}^{n+1,L} = V_{i,j}^n + \Delta t \Delta y \left( u_{i+1/2,j}^{n+1/2,L} - u_{i-1/2,j}^{n+1/2,L} \right) + \Delta t \Delta x \left( v_{i,j+1/2}^{n+1/2,L} - v_{i,j-1/2}^{n+1/2,L} \right).$$



## A short walk on Lagrange-remap (Euler 1D)

Lagrange step:

grange step : 
$$\rho_j^{n+1,L}V_j^{n+1,L} = \rho_j^nV_j^n \qquad \text{Pseudo-viscosity}$$
 
$$V_j^{n+1,L} = V_j^n + \Delta t(u_{j+1/2}^{n+1/2,L} - u_{j-1/2}^{n+1/2,L})$$
 
$$m_{j+1/2}^n u_{j+1/2}^{n+1,L} = m_{j+1/2}^n u_{j+1/2}^n - \Delta t(\Delta p_{j+1/2}^{n+1/2,L} + \Delta q_{j+1/2}^{n+1/2,L})$$

"
$$de + pd\tau$$
"

$$e_j^{n+1,L} = e_j^n - \frac{p_j^{n+1/2,L} + q_j^{n+1/2,L}}{m_j^n} (V_j^{n+1,L} - V_j^n)$$

$$\frac{e_j^{n+1,L} - e_j^n}{\Delta t} + \frac{p_j^{n+1/2,L}}{m_j^n} (u_{j+1/2}^{n+1/2,L} - u_{j-1/2,L}^{n+1/2,L}) = -\frac{q_j^{n+1/2,L}}{m_j^n} (u_{j+1/2}^{n+1/2,L} - u_{j-1/2,L}^{n+1/2,L})$$

$$q_j^{n+1/2,L} \propto -(u_{j+1/2}^{n+1/2,L} - u_{j-1/2}^{n+1/2,L})$$

$$= -\beta(\rho c^2)_j^{n+1/2,L} \Delta u_j^{n+1/2,L}$$
16

A short walk on Lagrange-remap ...

Lagrange step: entropy-satisfying

 Projection step: dissipative process due to Jensen's inequality (consider convex entropies)

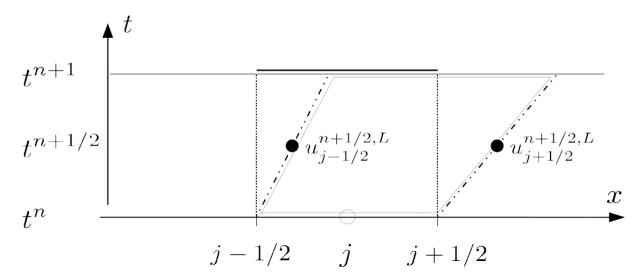
=> rather simple process with positivity & entropy properties, does not require any approximate Riemann solver.

#### Conservative form

- Lagrange-remap schemes actually can be rewritten in conservative form [De Vuyst et al, preprint 2013].
- 1D case :

$$(\alpha \rho_g)_j^{n+1} = (\alpha \rho_g)_j^{n+1} - \frac{\Delta t}{h} \left[ (\Phi_{m,g})_{j+1/2}^{n,n+1} - (\Phi_{m,g})_{j-1/2}^{n,n+1} \right],$$

$$(\Phi_{m,g})_{j+1/2}^{n,n+1} = \alpha_{j+1/2}^{n+1,L} (\rho_g)_{j+1/2}^{n+1,L} u_{j+1/2}^{n+1/2,L}$$



## Antidiffusive strategy

$$(\alpha \rho_g)_j^{n+1} = (\alpha \rho_g)_j^{n+1} - \frac{\Delta t}{h} \left[ (\Phi_{m,g})_{j+1/2}^{n,n+1} - (\Phi_{m,g})_{j-1/2}^{n,n+1} \right],$$

$$(\Phi_{m,g})_{j+1/2}^{n,n+1} = \alpha_{j+1/2}^{n+1,L} (\rho_g)_{j+1/2}^{n+1,L} u_{j+1/2}^{n+1/2,L}$$

Void fraction at interface: how to compute it?

- Strategy: « be as most accurate as possible for step-shaped color functions while being stable (just at the limit) »
- Idea: design a combination of upwind scheme
   and downwind scheme [Lagoutière Després 2002, Kokh-Lagoutière 2010]
- The advection process can be seen as a over-compressive « limiting » procedure (superbee-like, hyperbee, ...)

## Upwinding (stable but diffusive) vs downwinding (anti-diffusive but unstable) ...

Transport of the mass gas fraction :  $\partial_t c_g + m{u} \cdot 
abla c_g = 0$ 

Consistency requirement

$$(c_g)_{i+1/2,j} \in [min((c_g)_{i,j}, (c_g)_{i+1,j}), max((c_g)_{i,j}, (c_g)_{i+1,j})]$$

Stability requirement

« do not produce new extrema, discrete local maximum principle »

 Take the value closest to the downwind one while being in the trust interval.

### Some theoretical results

**Theorem 4.1.** Under the condition to be respected by the time step (in which  $s = sign(u_{i+1/2}^{n+1/2,L})$ )

$$V_{i+1/2,j,upw}^{n+1,*} - s\Delta t \Delta y \, u_{i+1/2-s,j} \ge 0, \tag{59}$$

when  $u_{i+1/2,j}^{n+1,L}u_{i+s/2,j}^{n+1,L} > 0$  (i.e. when the velocities at the edges of the cell where the stability condition is calculated are of the same sign), the value of  $\alpha_{i+1/2,j}^{LowDiff}$  can be taken in the following trust interval I:

$$I = \underbrace{I_1}_{flux \ consistency \ for \ c_g} \cap \underbrace{I_2^s}_{stability \ for \ c_g} := \left[\omega_{i+1/2,j}^{n+1,L}, \Omega_{i+1/2,j}^{n+1,L}\right] \in [0,1], \tag{60}$$

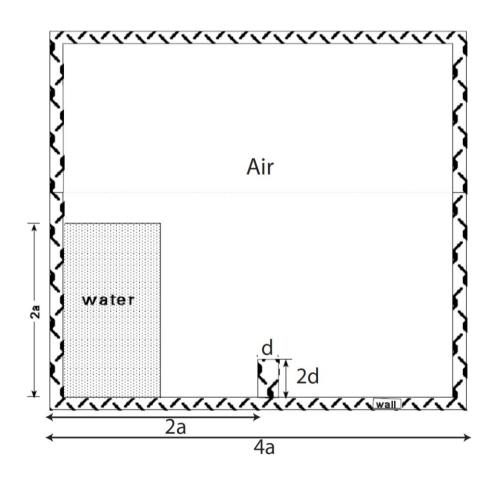
which is not empty since the upwind value  $\alpha_{i+1/2,j,up}^{n+1,L} \in I$ , where the interval  $I_1$  are defined by (44) and  $I_2^s$  by (48)-(49) (or written in a generic form (C.1)-(C.2)). Moreover, taking  $\alpha_{i+1/2,j}^{LowDiff} \in I$  ensures to respect maximum principle on  $c_g$  and especially to keep the positivity of the masses of each phases during the projection.

#### Test cases

and numerical experiments

(+ comparison to physical experiments for some of them)

## 1. Collapse of a liquid column with an obstacle



O. Ubbink Numerical prediction of two-fluid systems with sharp interfaces, PhD thesis (1997)

$$a = 0.146 \text{ m}, d = 0.024 \text{ m}$$

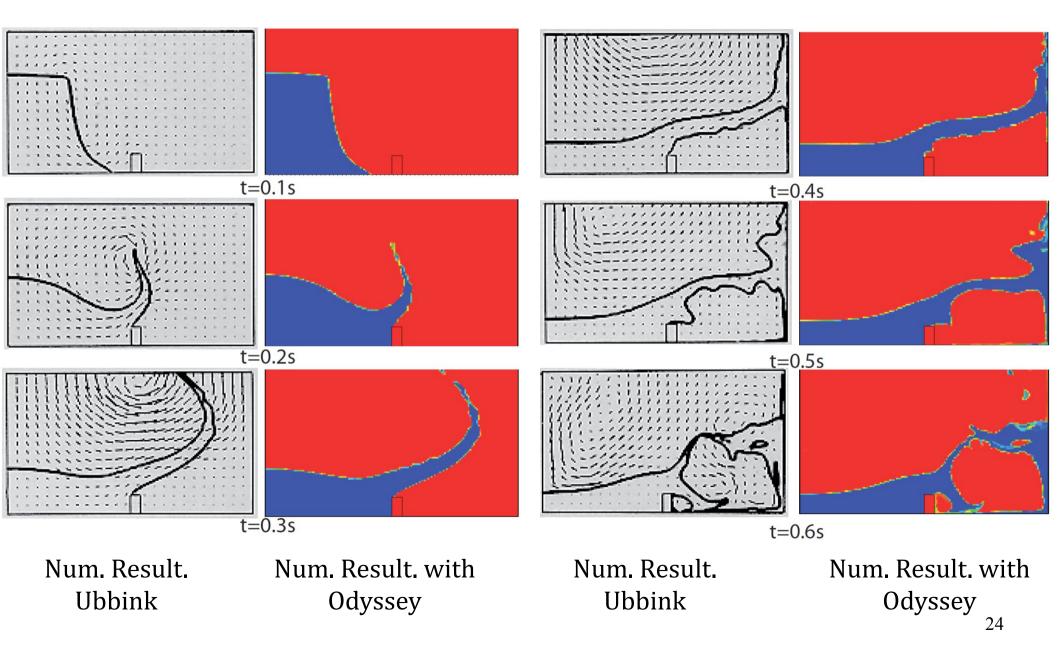
$$Nx = Ny = 150$$

$$\gamma_g = 1.4, \gamma_l = 7$$

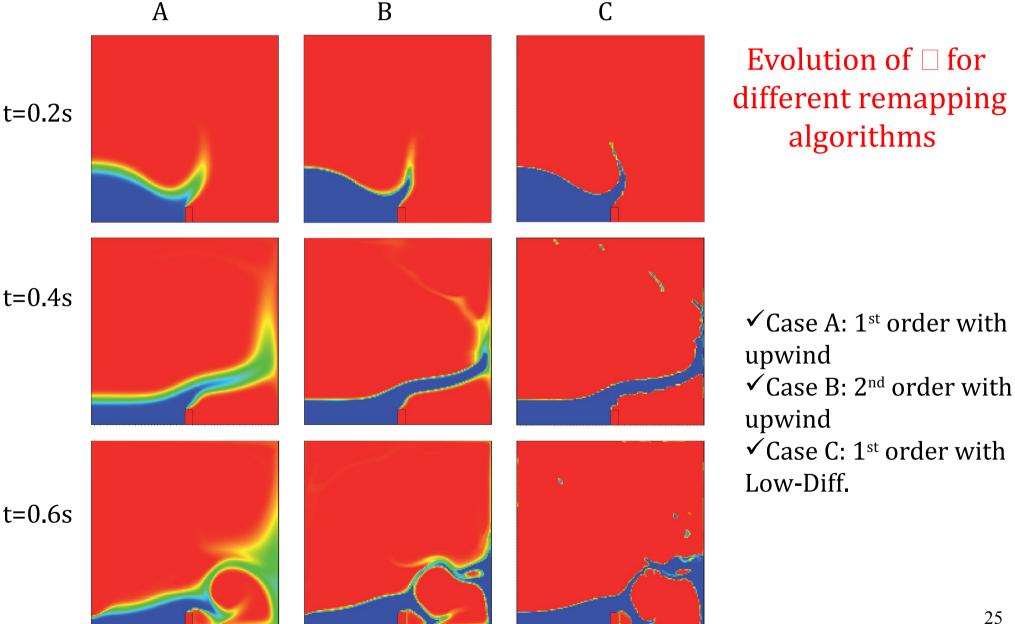
$$\rho_0^g = 1.28 \text{ kg.m}^{-3}, \rho_0^l = 1000 \text{ kg.m}^{-3}$$

$$P_0 = 10^5, c_{\text{sound}} = 350 \text{ m.s}^{-1}$$

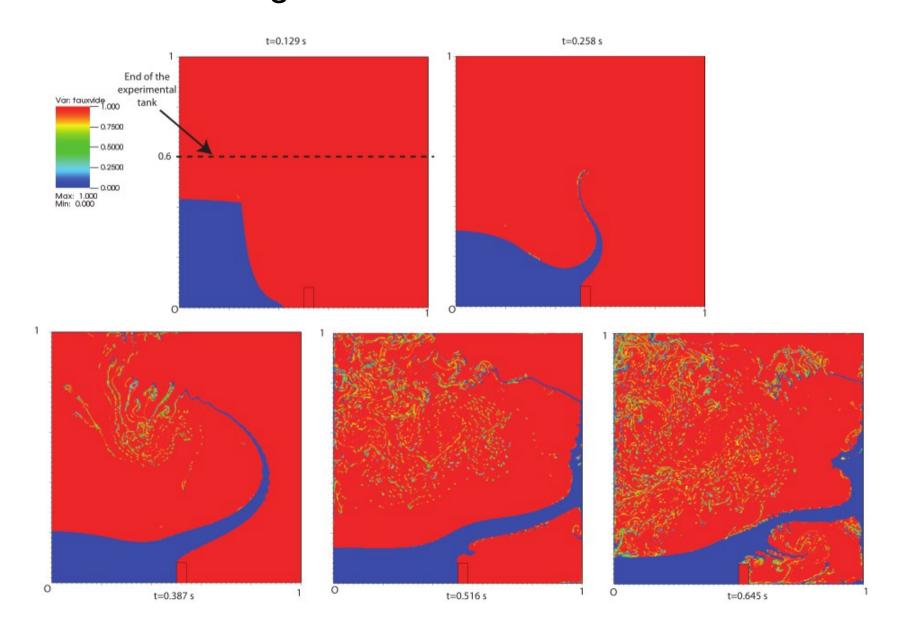
# Collapse with an obstacle – comparison with incompressible fluid model



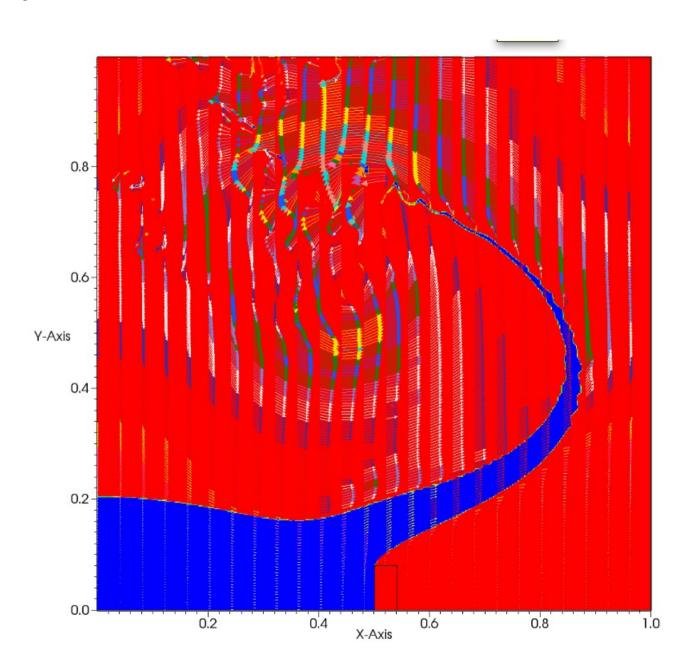
## Benefits of the antidiffusive approach



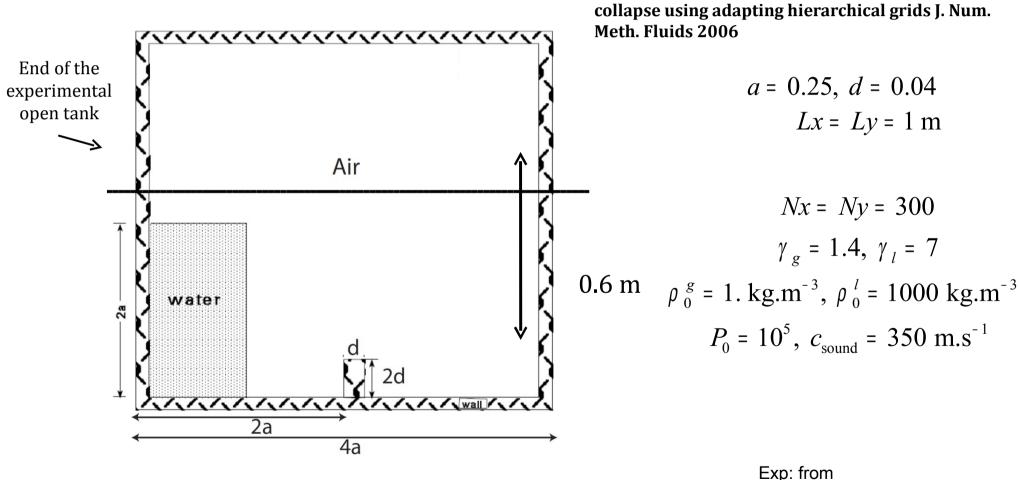
# Gas mass fraction: numerical diffusion appears due to filamentation / fragmentation



## Velocity vector field



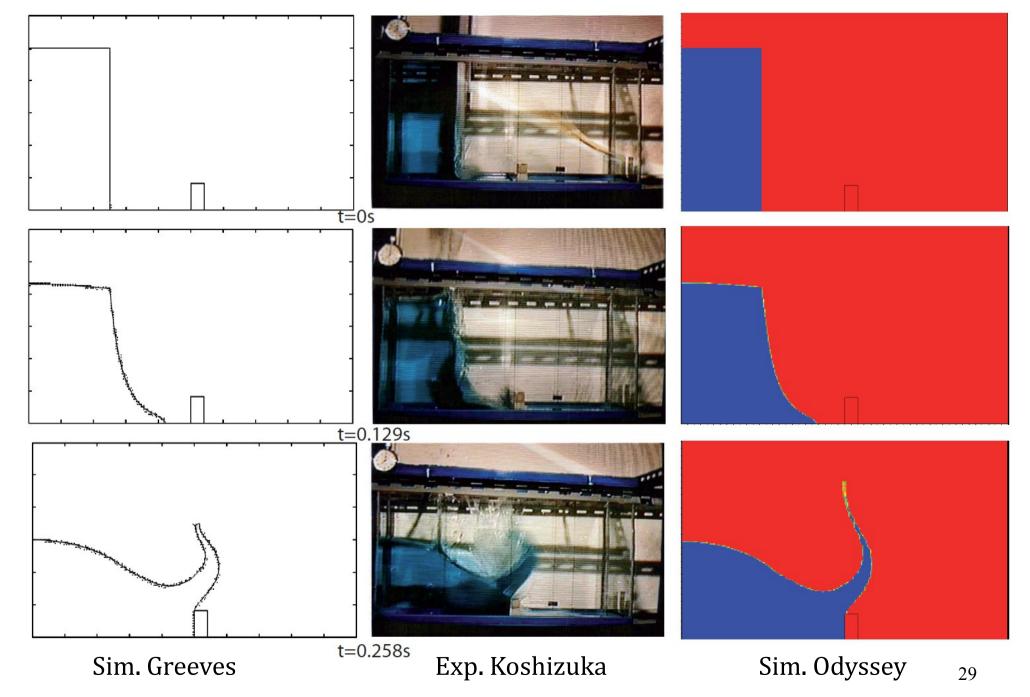
## Another case of collapse of a liquid column with an obstacle



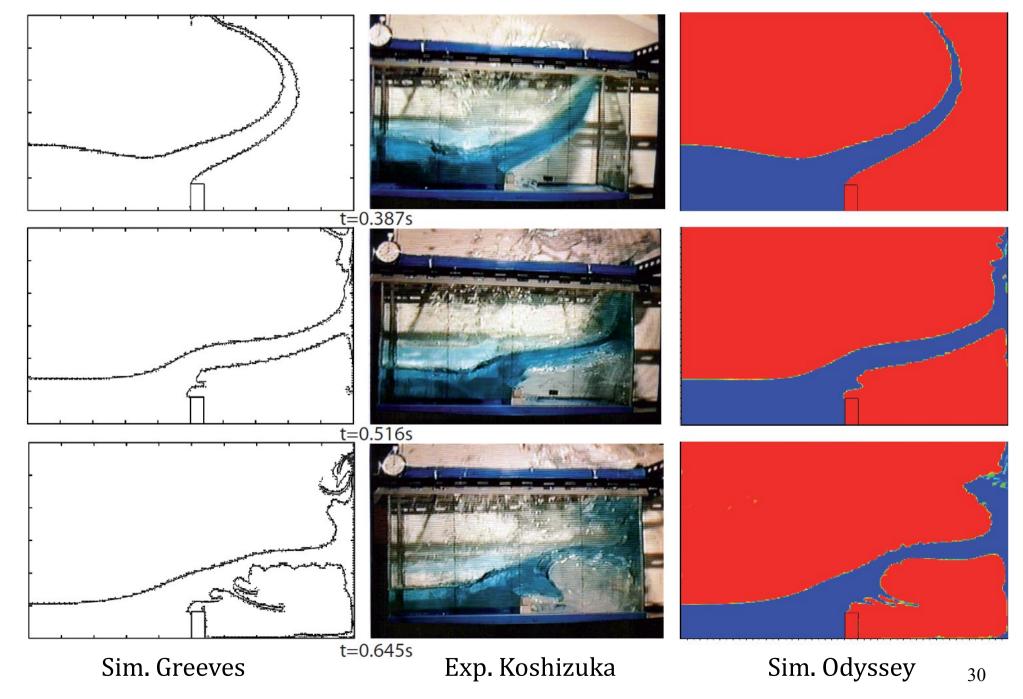
Koshizuka et al A particle method.. Comp. Fluid Mech. 1995

D. M. Greeves Simulation of viscous water column

## Simulations of a dam break

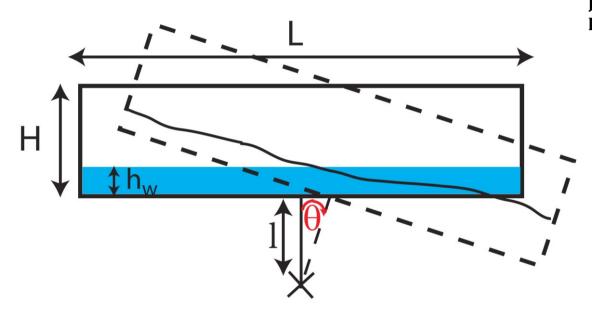


## Simulations of a dam break



## Sloshing test cases – pitch motion

 Sloshing due to the pitch motion of a rectangular tank:



J.R. Shao *et al* . An improved SPH method for modeling liquid sloshing dynamics. Comp. Fluids 2012

$$L = 0.64m$$
,  $H = 0.14m$ ,  $h_w = 0.03m$   
 $Nx = 300$ ,  $Ny = 67$ 

The tank is oscillating as a **pendulum** according to:

$$\theta(t) = \theta_0 \sin(\omega_r t)$$

with  $\theta_0 = 6^\circ$ ,  $\omega_r = 4.34 \text{ rad/s} (T = 1.45 \text{ s})$ 

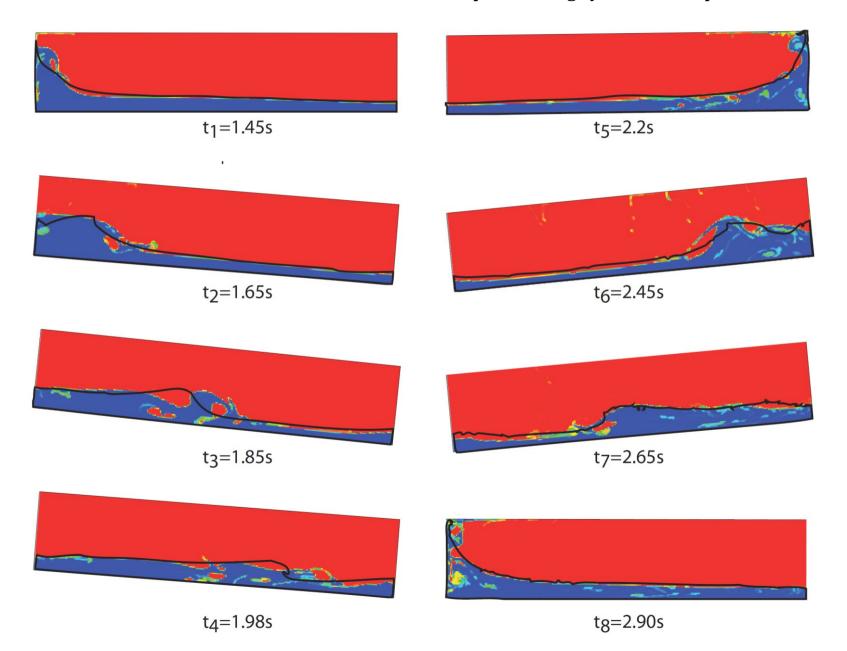


Simulation are performed in the frame of reference of the tank.

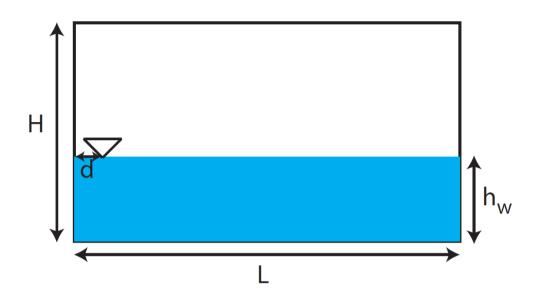
## Sloshing test cases – pitch motion

We superimpose the profile of the article:

J.R. Shao *et al* . An improved SPH method for modeling liquid sloshing dynamics. Comp. Fluids 2012



### Sloshing due to the **surge motion** of a rectangular tank:



J.R. Shao  $\it et al$  . An improved SPH method for modeling liquid sloshing dynamics. Comp. Fluids 2012

$$L = 1.73m$$
,  $H = 1.15m$ ,  $h_w = 0.6m$   
 $d = 0.05$  m

$$Nx = 173, Ny = 115$$

The tank is moving horizontally according to:

$$x(t) = A\cos\left(\frac{2\pi t}{T}\right)$$

with A = 0.032 m, T = 1.3 s ( $\omega_{forced} = 4.83$  rad/s).

First natural frequency of the fluid in the box

$$\omega_{fluid} = \sqrt{g \frac{\pi}{L} \tanh(\frac{\pi}{L} h_w)} \approx 3.77 \text{ rad/s}$$

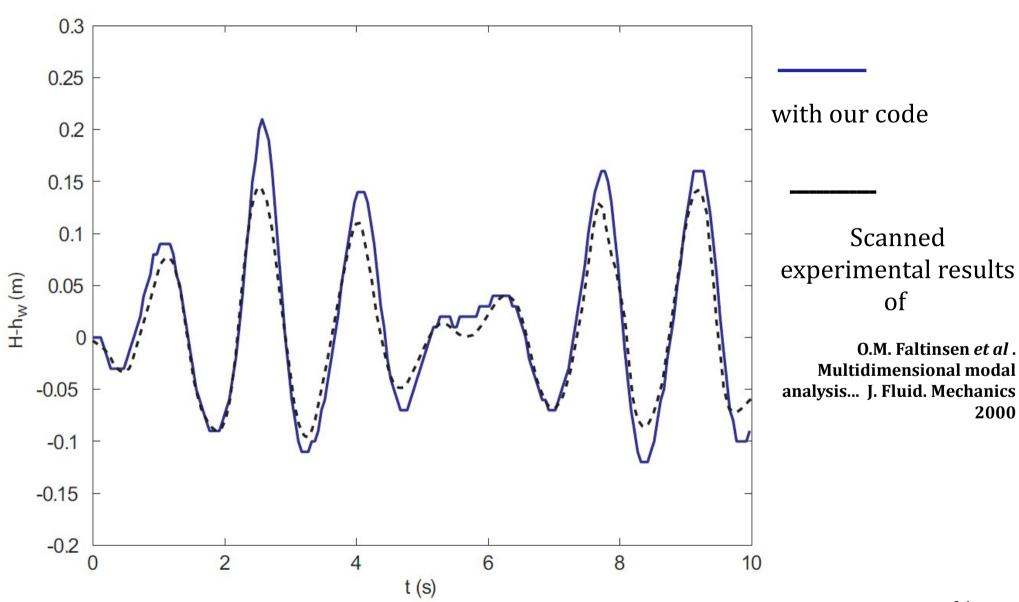
Two frequencies are acting  $\omega_{
m fluid}$  and  $\omega_{
m forced}$ 

Experimental results available:

O.M. Faltinsen *et al* . Multidimensional modal analysis... J. Fluid. Mechanics 2000

## Sloshing test cases – surge motion

#### Free surface elevation of water at the probe

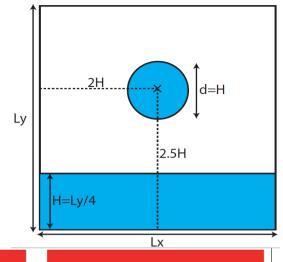


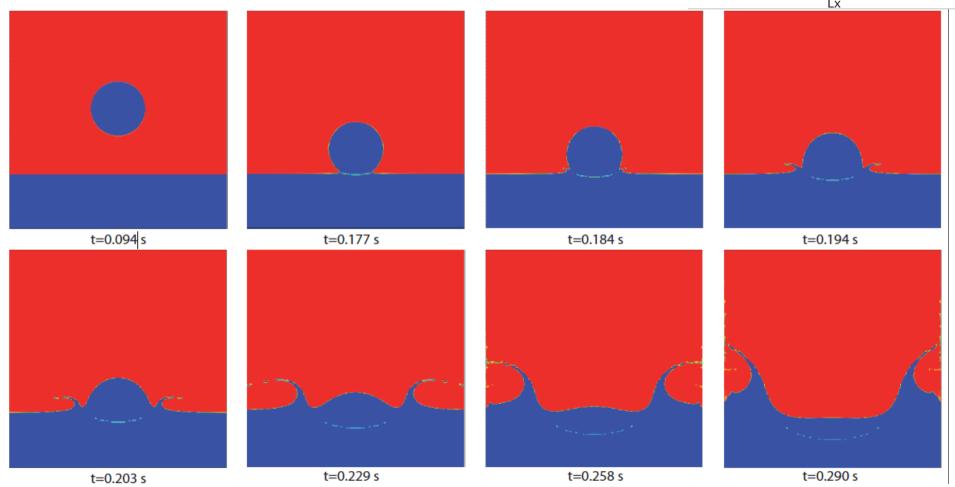
## Sloshing test cases – Surge motion

We search to **find a fit of** our curve with a function as a superposition of two signals

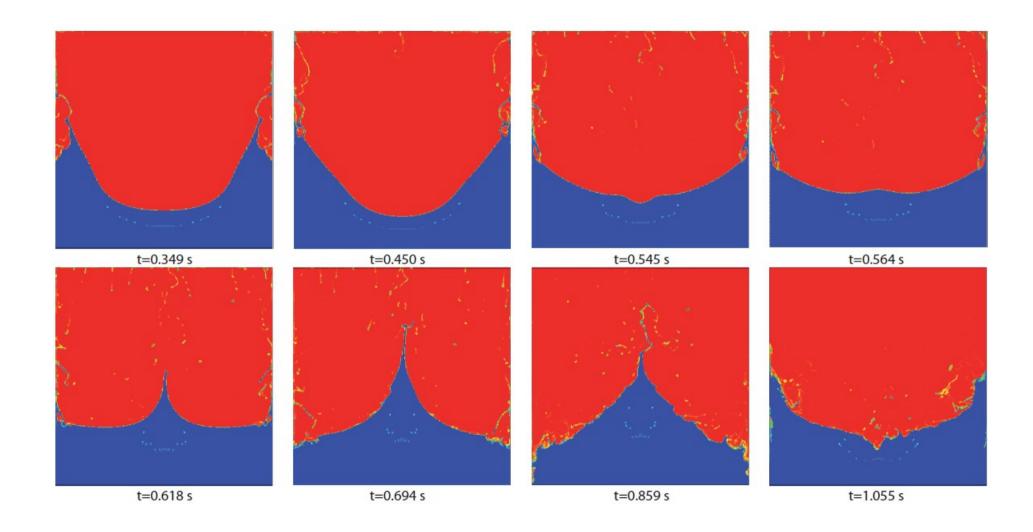
 $f(t) = A_1 \sin(f_1 t + \varphi_1) + A_2 \sin(f_2 t + \varphi_2)$ we get:  $f_1 = 3.74 \pm 0.01 \text{ rad/s}$ ,  $f_2 = 4.83 \pm 0.01 \text{ rad/s}$ **very close to**  $\omega_{\text{fluid}} \approx 3.77 \text{ rad/s}$  and  $\omega_{\text{forced}} = 4.83 \text{ rad/s}$ 0.20 Coefficient values  $\pm$  one standard deviation  $=-0.080534 \pm 0.0014$ 0.15  $=1.5875 \pm 0.0426$  $=0.011949 \pm 0.000963$ =0.066601 ± 0.00139 0.10 0.05 0.00 -0.05 -0.10 2 10

# Free fall of liquid and impact with liquid at rest

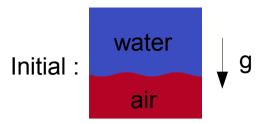


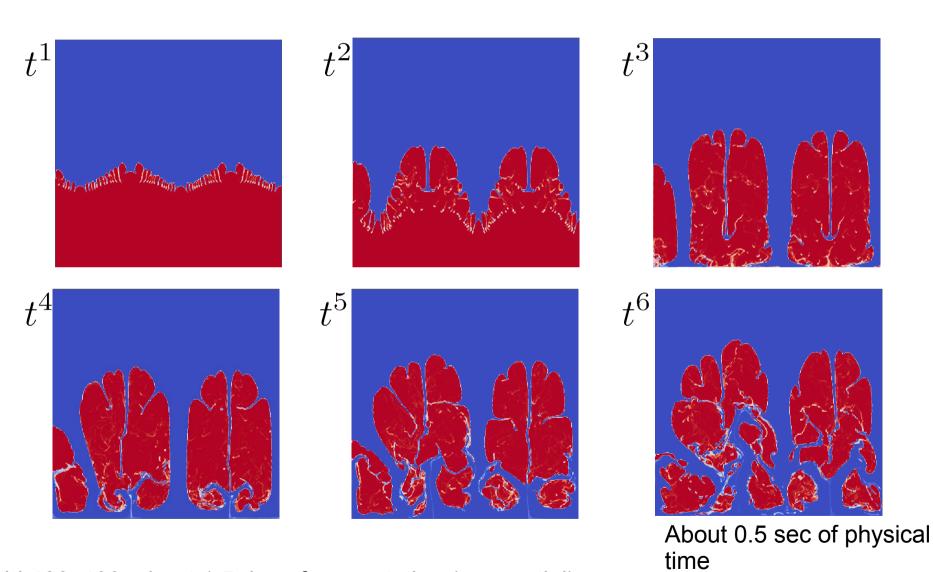


## Liquid-liquid impact



### LT air-water Rayleigh-Taylor instability





Grid 400x400, about 1.5 day of computation (sequential)

## Concluding remarks

- Innovative numerical Eulerian method involving :
  - a Lagrange-Remap finite volume method
  - an anti-diffusive approach on the gas mass/volume fraction
- The test cases show a good agreement between XP and other codes (dam break, sloshing events)

- Ongoing works: XP + num of water wave wall impact (L. Lenain, K. Melville, U. Delaware, Frédéric Dias, U. College Dublin).
- Need to add: physical viscosity, surface tension
- Graphics Processing Unit (GPU) implementation



### Thank you for your attention





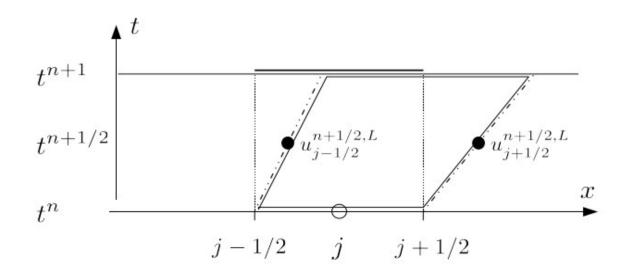
### Lagrange-remap: conservative reformulation

i.e.

$$\rho_j^{n+1,L} = \frac{\rho_j^n}{1 + \frac{\Delta t}{h} (\Delta u)_j^{n+1/2,L}}, \quad (\Delta u)_j^{n+1/2,L} := u_{j+1/2}^{n+1/2,L} - u_{j-1/2}^{n+1/2,L}.$$

Projection step:

$$\rho_j^{n+1} = \frac{1}{h} \int_{I_j} \mathscr{I} \rho^{n+1,L}(x) \, dx = \frac{1}{h} \int_{I_j^{n+1,L}} \dots - \dots + \dots \, .$$



## Lagrange-remap: conservative reformulation

Mass balance rewritting: under some convenient CFL condition, we have

$$h\rho_{j}^{n+1} = h_{j}^{n+1,L}\rho_{j}^{n+1,L} - \Delta t \rho_{j+1/2}^{upw,n+1} u_{j+1/2}^{n+1/2,L} + \Delta t \rho_{j+1/2}^{upw,n+1} u_{j-1/2}^{n+1/2,L}$$

$$= h\rho_{j}^{n} - \Delta t \rho_{j+1/2}^{upw,n+1} u_{j+1/2}^{n+1/2,L} + \Delta t \rho_{j+1/2}^{upw,n+1} u_{j-1/2}^{n+1/2,L}$$

in the form

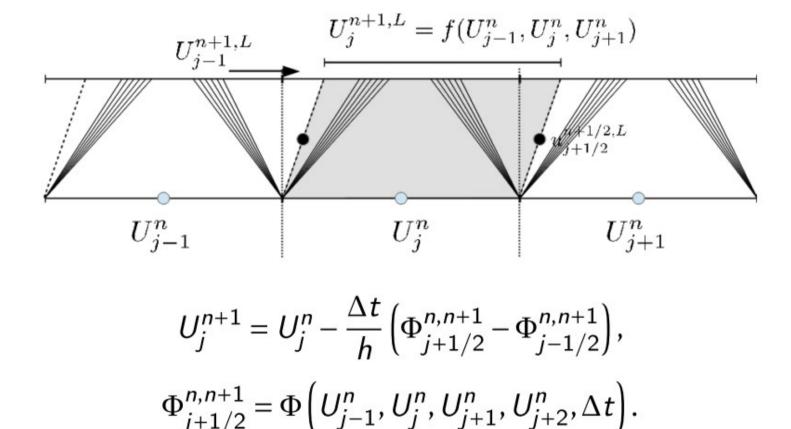
$$\rho_{j}^{n+1} = \rho_{j}^{n} - \frac{\Delta t}{h} \left( \Phi_{m,j+1/2}^{n+1/2,n+1} - \Phi_{m,j-1/2}^{n+1/2,n+1} \right),$$

$$\Phi_{m,j+1/2}^{n+1/2,n+1} = \rho_{j+1/2}^{upw,n+1} u_{j+1/2}^{n+1/2,L}.$$

[De Vuyst, Fochesato, Loubère, Saas, Motte, Ghidaglia, preprint paper 2013]

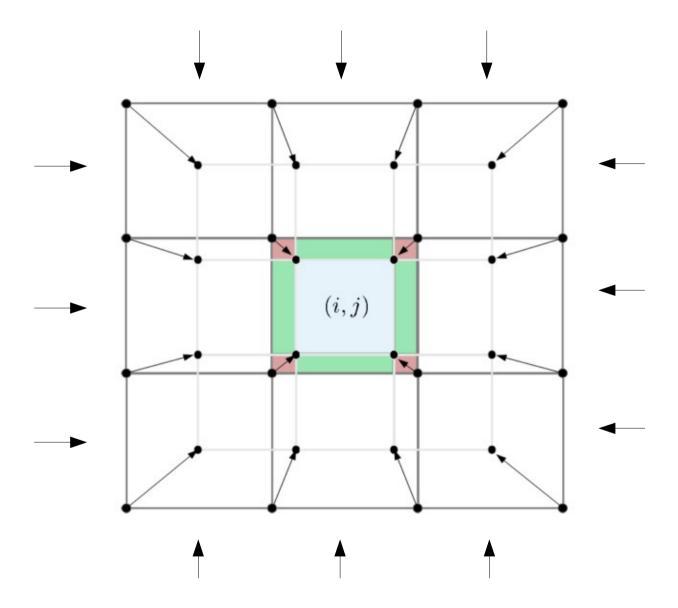
#### Remark

First-order (1st-order remap) LR schemes are actually 5-point schemes!



→ Large stencil method : limited GPU performance because of lot of memory reads.

### Lagrange-remap: two-dimensional case (1st-order accurate)



21-point scheme! (large stencil)
NB: multidimensional corner effects