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Context, applications

● Air-water flows, violent flow conditions
● Fast dynamics, transient regime

● Applications : Liquified Natural Gas LNG 
carriers, hydrodynamics, coastal engineering, 
wave impact, ... 

LNG carrier tank

Wave impact pressure peak 
analysis
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Objectives

● Design numerical methods subject to some requirements : 

– Robustness

– Accuracy

– Conservation

– Fluid treated as compressible

– Natural parallel extension / implementation

● Accelerate computations to 2 or 3 orders of magnitude, 
allowing for statistics (as for experimental setups, hexapods) 
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Sources of stiffness

● Gas/liquid mass density ratio of order 1000

● Stiffness due to weak compressibility of liquid → low Mach 

number flows

● Gas-liquid free boundaries

Assumptions here

● Viscous effects omitted

● Surface tension omitted
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Derivation of the system (inviscid)

Indicator function :
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Involving gas mass fraction

From

we also get
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Dealing with numerical z in [0,1]

Total mass conservation

Momentum balance

Gas mass conservation

Pressure closure

In the spirit of [Kokh-Lagoutière 2010]

Introducing the volume fraction :

Shorcoming: may be undetermined numerically. 
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Use of a (simplified) volume-averaged system
and pressure equilibrium closure

Pressure equilibrium into an elementery volume

can be rewritten as
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Typical equations of state (EOS) in use

Near atmospheric conditions :
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Pressure equilibrium equation

● From the knowledge of the conservative variables 
               and                              , we have to solve :

i.e.

● NB : very stiff function, the choice of the iterative solver 
requires attention (initial guess, surrogates, Newton, etc.) 

                                                 In fact, there is a trick … : 
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Trick for initial guess :

● The liquid mass conservation equation can be written in 
conservative form as :

● Under the weak compressibility assumption or the liquid 
phase, we get

● A numerical scheme is applied to this additional ``guess 
equation'' to compute initial guesses of the iterative solver

→ Newton algorithm converges in 2 iterates with acceptable 
accuracy (strong improvement in CPU time).
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Numerical scheme
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Remapped Lagrange Eulerian solver

● First write the equations in Lagrange form 

● Advance in time 

● Project the quantities on the fixed Eulerian grid (remap)
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Typical Lagrange scheme (spatial staggered grid)
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A short walk on Lagrange-remap (Euler 1D)

Lagrange step :
Pseudo-viscosity
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A short walk on Lagrange-remap ...

● Lagrange step : entropy-satisfying

● Projection step : dissipative process due to 
Jensen's inequality (consider convex entropies)
…

=> rather simple process with positivity & entropy 
properties, does not require any approximate Riemann 
solver.
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Conservative form

● Lagrange-remap schemes actually can be rewritten in 
conservative form [De Vuyst et al, preprint 2013].

● 1D case : 



  19

Antidiffusive strategy

Void fraction at interface :
how to compute it ?

● Strategy : « be as most accurate as possible for 
step-shaped color functions while being stable (just at the limit) »

● Idea : design a combination of upwind scheme 
and downwind scheme [Lagoutière Després 2002, Kokh-Lagoutière 2010]

● The advection process can be seen as a over-compressive
« limiting » procedure (superbee-like, hyperbee, ...)
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Upwinding (stable but diffusive) vs
downwinding (anti-diffusive but unstable) ...

● Consistency requirement

● Stability requirement

● Take the value closest to the downwind one while 
being in the trust interval.

Transport of the mass gas fraction :

« do not produce new extrema, discrete local maximum principle »
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Some theoretical results
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Test cases 

and numerical experiments

(+ comparison to physical experiments
for some of them)
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1. Collapse of a liquid column with an obstacle

O. Ubbink Numerical prediction of two-fluid systems 
with sharp interfaces, PhD thesis (1997)

150Nx Ny= =
1.4,  7g lγ γ= =
3 3

0 01.28 kg.m ,  1000 kg.mg lρ ρ− −= =
5 1

0 sound10 ,  350 m.sP c −= =

0.146 m,  0.024 ma d= =
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Collapse with an obstacle – comparison with 
incompressible fluid model

Num. Result. 
Ubbink

Num. Result. 
Ubbink

Num. Result. with 
Odyssey

Num. Result. with 
Odyssey



  25

Benefits of the antidiffusive approach

t=0.2s

t=0.4s

t=0.6s

Evolution of for 
different remapping

algorithms  

A B C

Case A: 1st order with 
upwind
Case B: 2nd order with 
upwind
Case C: 1st order with 
Low-Diff. 
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Gas mass fraction : numerical diffusion appears due to 
filamentation / fragmentation
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Velocity vector field
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● Another case of collapse of a liquid column with 
an obstacle

D. M. Greeves Simulation of viscous water column 
collapse using adapting hierarchical grids J. Num. 
Meth. Fluids 2006

300Nx Ny= =
1.4,  7g lγ γ= =

3 3
0 01. kg.m ,  1000 kg.mg lρ ρ− −= =

5 1
0 sound10 ,  350 m.sP c −= =

Exp: from 
Koshizuka et al A particle method.. Comp. Fluid Mech. 1995

0.25,  0.04a d= =
End of the 

experimental 
open tank 1 mLx Ly= =

0.6 m
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Simulations of a dam break

Sim. Greeves Exp. Koshizuka Sim. Odyssey
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Simulations of a dam break

Sim. Greeves Exp. Koshizuka Sim. Odyssey
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Sloshing test cases – pitch motion

● Sloshing due to the pitch motion of a 
rectangular tank:

J.R. Shao et al . An improved SPH method for modeling 
liquid sloshing dynamics.  Comp. Fluids 2012

The tank is oscillating as a 
pendulum according to:

( )0( ) sin rt tθ θ ω=

0.64 ,  0.14 ,  0.03

300,  67
wL m H m h m

Nx Ny

= = =
= =

( )0 6 ,  4.34 rad/s 1.45 sr Tθ ω= = =owith

Simulation are performed in the frame 
of reference of the tank.
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Sloshing test cases – pitch motion
J.R. Shao et al . An improved SPH method for modeling 
liquid sloshing dynamics.  Comp. Fluids 2012

We superimpose the profile of the article:
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Sloshing due to the surge motion of a rectangular tank:

The tank is moving horizontally according to:

1.73 ,  1.15 ,  0.6

0.05 m

173,  115

wL m H m h m

d

Nx Ny

= = =
=

= =

0.032 m,  1.3 s  ( =4.83 rad/s).forcedA T ω= =with

J.R. Shao et al . An improved SPH method for modeling 
liquid sloshing dynamics.  Comp. Fluids 2012

First natural frequency of the fluid 
in the box

Two frequencies are acting          and                  forcedωfluidω

O.M. Faltinsen et al . Multidimensional modal 
analysis...  J. Fluid. Mechanics 2000

Experimental results available:
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Sloshing test cases – surge motion

Free surface elevation of water at the probe

with our code

Scanned 
experimental results 

of 

O.M. Faltinsen et al . 
Multidimensional modal 

analysis...  J. Fluid. Mechanics 
2000
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We search to find a fit of our curve with a function as a superposition of two signals
                                                                    
                                                                       ,       we get: 

Sloshing test cases – Surge motion

1 1 1 2 2 2( ) sin( ) sin( )f t A f t A f tϕ ϕ= + + + 1 23.74 0.01 rad/s,  4.83 0.01 rad/s f f= ± = ±

very close to                                   and =4.83 rad/sforcedωfluid 3.77 rad/sω ≈
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Free fall of liquid 
and impact with liquid at rest
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Liquid-liquid impact
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LT air-water Rayleigh-Taylor instability
water

air

Initial : g

Grid 400x400, about 1.5 day of computation (sequential)

About 0.5 sec of physical 
time
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Concluding remarks

● Innovative numerical Eulerian method involving :

– a Lagrange-Remap finite volume method

– an anti-diffusive approach on the gas mass/volume fraction

● The test cases show a good agreement between XP and other codes 

(dam break, sloshing events)

● Ongoing works : XP + num of water wave wall impact (L. Lenain, K. 

Melville, U. Delaware, Frédéric Dias, U. College Dublin).

● Need to add : physical viscosity, surface tension

● Graphics Processing Unit (GPU) implementation
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Thank you for your attention



  

Lagrange-remap : conservative reformulation



  

Lagrange-remap: conservative reformulation

[De Vuyst, Fochesato, Loubère, Saas, Motte, Ghidaglia, preprint paper 2013]



  

Remark

→ Large stencil method : limited GPU performance because of lot of memory reads. 



  

Lagrange-remap : two-dimensional case (1st-order accurate)

21-point scheme ! (large stencil)
NB : multidimensional corner effects
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